
UDMCA – A Shiny App for Single Species Univariate

Changepoint Analysis

Udani A. Wijewardhana * uwijewardhana@swin.edu.au

UDMCA is a Shiny web application that allows to visualize changepoints by using Bayesian

changepoint techniques implemented in ‘changepoint’, ‘breakpoint’, ‘cumSeg’ and ‘bcp’. To

carry out these analyses users simply need to click the buttons that create the input files

required, execute the software and process the output to generate tables of values and plots

with the results. User can use four Bayesian changepoint methods to identify the significant

changes of the abundance level using raw data (abundance/occurrence). Still these techniques

allow to detect changepoints for a single location (univariate scenario). Therefore, the data

entered by users are considered as a single location data when analyse changepoints.

The application consists of 2 pages with main window:

1) Main window allows the user to upload the input files (data file) and also gives the

option to normalize or standardize the counts or predictors data.

This page give the output table of data the user inputs to the app. Used should input a .CSV

file with the columns “Year”, “Count” and the numeric predictors for bcp method (optional).

The first two column names “Year” and “Count” are case sensitive.

2) Changepoint analysis page that user can choose a Bayesian changepoint method to

carry out the changepoint analysis.

This page gives the option to fit Bayesian changepoints for species count data. This app has

developed for univariate changepoint methods and it will consider the count data CSV as a

single located dataset. It is easy to identify the changepoint locations if you use count data in

ascending order with an ID (e.g. for monthly data starting from January 2002, assign 2 for

February 2002). Four Bayesian changepoint packages (changepoint, breakpoint, cumSeg and

bcp) could be used to find the significant changes. This page also visualizes the relevant

changepoint profile plots. For bcp package user has the option to use predictor variables to

analyse. As the algorithms stated in the page, user can change the relevant parameters for each

method and find the best scenario.

Changepoint Analysis - Statistical packages used

changepoint package: The changepoint package implements various mainstream and

specialised changepoint methods for finding single and multiple changepoints within data which

includes many popular non-parametric and frequentist methods (Killick, Haynes and Eckley,

2016).

breakpoint package: The breakpoint package implements variants of the Cross-Entropy (CE)

method to estimate both the number and the corresponding locations of break-points in

biological sequences of continuous and discrete measurements. The proposed method primarily

built to detect multiple break-points in genomic sequences. However, it can be easily extended

and applied to other problems (Priyadarshana and Sofronov, 2016).

cumSeg package: The cumSeg package (Muggeo, 2010) estimates the of number and location

of change points in mean-shift (piecewise constant) models which is useful to model genomic

sequences of continuous measurements. The algorithm first estimates the highest number of

mailto:uwijewardhana@swin.edu.au

change points using the efficient ‘segmented’ algorithm of Muggeo (2003) and then select some

of them using a generalized BIC criterion by applying the lar’s algorithm of Efron et al. (2004)

(Muggeo, 2010).

bcp package: The bcp package provides an implementation of the Barry and Hartigan (1993)

product partition model for the normal errors change point problem using Markov Chain Monte

Carlo. It also extends the methodology to regression models on a connected graph (Wang and

Emerson, 2015) and allows estimation of change point models with multivariate responses

(Erdman and Emerson, 2007).

Structure of UDMCA App

Information about all the packages used are shown in Table 1.

Table 1. Softwares and R packages used for developing UDMCA

Package Name Description

dplyr Wickham and Francois, 2016 A fast, consistent tool for working with data frame

like objects, both in memory and out of memory.

plyr Wickham, 2011 plyr is an R package that makes it simple to split data

apart, do stuff to it, and mash it back together. This

is a common data-manipulation step. Importantly,

plyr makes it easy to control the input and output

data format from a syntactically consistent set of

functions.
htmlwidgets

Vaidyanathan et al., 2016
Provides a framework for easily creating R bindings

to JavaScript libraries.

shiny Chang et al., 2016 Web Application Framework for R.

changepoint

breakpoint

bcp
cumSeg

Killick, Haynes and Eckley,

2016

Priyadarshana and Sofronov,

2016

Erdman and Emerson, 2007

Muggeo, 2010

Bayesian changepoint analysis techniques.

DT Xie, 2016 Create data tables.

We create a sidebar-style user interface. A title panel, a sidebar panel for inputs on the left, and

a main panel for outputs on the right make up this layout. The fluidPage() function contains

the user interface elements, which allows the programme to automatically resize to the size of

the browser window. titlePanel() is used to add the title of the app. Then we create a sidebar

layout with input and output definitions using sidebarLayout(). The variables sidebarPanel()

and mainPanel() are sent to sidebarLayout(). The sidebarPanel() creates a left-hand sidebar

panel for inputs. mainPanel() generates a main panel on the right for showing outputs. Here

we have added texts with the description of the panels while separating the multiple elements

in the same panel with commas.

ui <- fluidPage(
 titlePanel("title"),
 sidebarLayout(
 sidebarPanel("sidebar panel for inputs"),
 mainPanel("main panel for outputs")
)
)

To import the data, we want to show in the app we have used the read.csv() function A

sample data can be found in the repository called Data.csv. We write this code at the

beginning of app.R outside the server() function to read the data once which is not

unnecessarily run more than once and the performance of the app is not decreased. We use DT

package to show the data in using an interactive table. In ui we use DTOutput(), and

in server() we use renderDT().

The input values are used to read the CSV and shapefile files. This is accomplished through

the use of a reactive expression. An R expression that uses an input value and returns a value

is known as a reactive expression. The reactive() method, which takes a R expression

surrounded by braces ({}), is used to produce a reactive expression. When the input value

changes, the reactive expression updates. For instance, read.csv(input$filedata$datapath)

reads the data, where input$filedata$datapath is the data path provided in the value of the

input that uploads the data. Inside reactive(), we put read.csv(input$filedata$datapath).

The reactive expression is executed each time input$filedata$datapath is modified in this

way. The reactive expression's output is assigned to data. Data can be obtained with data() in

server(). Each time the reactive expression that builds is executed, data() will be changed.

data <- reactive({read.csv(input$filedata$datapath)}) # in server()

We start the reactive expression that reads the data with req(input$filedata). If the data has

not been uploaded the input$filedata = “”. This stops the execution of the reactive

expression, then data() is not updated, and the output depending on data() is not executed.

HTML widgets are created with JavaScript libraries and embedded in Shiny by using the

HTML widgets package (Vaidyanathan et al., 2016). These HTML widgets are included into

the application by calling an output for the widget in the ui and assigning a render call to the

output on the server().

We have included the ability for the user to select a specific variable and year to be

displayed. To make it easier to choose a variable, we have included a menu input with all of

the options. The map and time plot will then be rebuilt when the user picks a specific

variable. We need to place an input function *Input() in the ui object to add an input to a

Shiny app. Several arguments are required for each input function. The first two are inputId,

which is an id that is required to retrieve the input value, and label, which is the text

displayed next to the input in the app. We used selectInput() function for predictor variables

normalization option by selecting the appropriate names from boxes containing the possible

choices. Similarly, changepoint analysis page includes numericInput() functions which allow

to enter a single number or a range to fit the model. As shown below, we create the input with

a menu that provides the variable options using selectInput().

in ui
selectInput(
 inputId = "variableselected",
 label = "Select variable",
 choices = c("cases", "population")
)

Set up and installation

To build this Shiny app, we need to clone the Zip file from UDMCA and save it in our

computer. This folder contains a sample data .CSV file, the vignette and app.R file. Then, we

https://github.com/uwijewardhana/UDMCA.

can launch the app by clicking the Run App button at the top of the RStudio editor or by

executing runApp("appdir_path")where appdir_path is the path of the directory that contains

the app.R file. For this we need to install R and RStudio in our computer. The users who do

not have R in their computer can use UDMCA to launch the Shiny app. A snapshot of the Shiny

app created is shown in Figure 1.

Figure 1 Snapshot of the UDMCA App

References

Shiny.rstudio.com. 2020. Shiny - Reactivity - An Overview. [online] Available at:

https://shiny.rstudio.com/articles/reactivity-overview.html [Accessed 29 April 2020].

Killick R, Haynes K and Eckley IA (2016). changepoint: An R package for changepoint

analysis. R package version 2.2.2, https://CRAN.R-project.org/package=changepoint.

Priyadarshana, W. J. R. M., and G. Sofronov. (2016). breakpoint: An R Package for Multiple

Break-Point Detection via the Cross-Entropy Method. CRAN Repository (2016): 1-25.

Muggeo, V. M. R., and G. Adelfio. (2011). Efficient change pointdetection for genomic

sequences of continuous measurements.Bioinformatics 27:161-166.

http://dx.doi.org/10.1093/bioinformatics/btq647

Muggeo, V.M.R. (2003), Estimating regression models with unknown break‐points. Statist.

Med., 22: 3055-3071. doi:10.1002/sim.1545

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Leastangle regression.Annals

of Statistics,32, 407– 489.

Barry,D. and Hartigan,J.A. (1993) A Bayesian analysis for change point problems.J. Am.Stat.

Assoc.,88, 309– 319.

https://udani-wijewardhana.shinyapps.io/UDMCA/
https://cran.r-project.org/package%3Dchangepoint
http://dx.doi.org/10.1093/bioinformatics/btq647
https://doi.org/10.1002/sim.1545

Chandra Erdman, John W. Emerson (2007), bcp: An R Package for Performing a Bayesian

Analysis of Change Point Problems, Journal of Statistical Software, 23(3), 1-13, URL

http://www.jstatsoft.org/v23/i03/.

Xiaofei Wang and John W. Emerson (2015), Bayesian Change Point Analysis of Linear

Models on General Graphs, Working Paper.

Xie Y (2016). DT: A Wrapper of the JavaScript Library ’DataTables’. R package version 0.2,

URL https://CRAN.R-project.org/package=DT.

Vaidyanathan R, Xie Y, Allaire J, Cheng J, Russell K (2016). htmlwidgets: HTML Widgets

for R. R package version 0.7, URL https://CRAN.R-project.org/package=htmlwidgets.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.

Wickham H, Francois R (2016). dplyr: A Grammar of Data Manipulation. R package version

0.5.0, URL https://CRAN.R-project.org/package=dplyr.

ChangW, Cheng J, Allaire J, Xie Y,McPherson J (2016). shiny: Web Application Framework

for R. R package version 0.14.1, URL https://CRAN.R-project.org/package=shiny.

Xie Y (2016). DT: A Wrapper of the JavaScript Library ’DataTables’. R package version 0.2,

URL https://CRAN.R-project.org/package=DT.

http://www.jstatsoft.org/v23/i03/
https://cran.r-project.org/package%3DDT
https://cran.r-project.org/package%3Dhtmlwidgets
https://www.r-project.org/
https://cran.r-project.org/package%3Ddplyr
https://cran.r-project.org/package%3Dshiny
https://cran.r-project.org/package%3DDT

